Synthetic Diagnostic Approach to Analysis of Imaging Bolometer Data from LHD

B. J. Peterson¹, K. Mukai¹, S. Pandya², R. Sano², M. Itomi³, M. Kobayashi¹, E. A. Drapiko⁴, and the LHD Experiment Group

¹National Institute for Fusion Science, Toki-shi, Gifu-ken 509-5292, Japan ²Graduate Univ. for Adv. Studies, Toki-shi, Gifu-ken 509-5292, Japan ³Hokkaido Univ., Sapporo, Hokkaido, Japan ⁴Kurchatov Inst., Moscow, Russia

> Imaging Diagnostics Workshop June 28, 2013 National Institute for Fusion Science

Outline

- IRVB concept
- IRVBs on LHD
- Calculation of geometry matrices

- Synthetic instruments vs tomography
- Detachment using magnetic island
- Conclusions

page

IR imaging Video Bolometer (IRVB)

4

[1] B.J. Peterson, Rev. Sci. Instrum. 70 (2000) 3696. [2] B.J. Peterson et al., Rev. Sci. Instrum. 72 (2001) 923.

IRVB - Concept

Solve foil 2D heat diffusion equation for P_{rad} IRVB pinhole camera ∂T copper frame $2_{rad} + \Omega_{bb} +$ **IR** measured ∂x $K \partial t$ by camera Plasma radiation absorbed by foil 2**-**D iffusivion o frame hermal foil thermal Laplacian **Thin foil** diffusivity light shield $\frac{\varepsilon\sigma_{S-B}(T^4 \mathcal{E} \cong 1$ copper frame black body cooling term plasma radiated power is determined by numerically solving heat diffusion equation rad Ω_{rad} using a Crank-Nicholson scheme foil thermal bolometer foil conductivity pixel area thickness

B.J. Peterson et al., Rev. Sci. Instrum. 74 (2003) 2040.

IR Imaging video Bolometer (calibration technique)

The two-dimensional heat diffusion equation

Geometry matrix calculation for synthetic diagnostic for LHD IRVB

- \bullet Plasma is divided into volumes using R, z, ϕ
- $\Delta R = 5 \text{ cm}, \Delta z = 5 \text{ cm}, \Delta \phi = 1 \text{ degree}$
- 2.5 m < R < 5.0 m (50 divisions)
- -1.3 m < z < 1.3 m (52 divisions)
- $\phi = 0$ 18 degrees (18 divisions) assume helical symmetry $S(R, \phi, Z) = S(R, 36 \phi, -Z)$
- total 46,800 cells
- Intersection of plasma volumes and bolometer chord volumes, V_{ij} , is determined using subvoxels < 1 cm
- Solid angle, Ω_{ij} for the center of each subvoxel is calculated

$$\Omega_{i,j} = A_{\rm det} \,/\, d^2$$

• Write system of equations for detector power, P_i , and volume emissivity, S_j

$$P_i = \sum_j \frac{\Omega_{ij}}{4\pi} V_{ij} S_j = \sum_j T_{ij} S_j$$

- Then geometry matrix, T_{ij} , is determined
- 3-D C radiation data from EMC3-EIRENE is resampled to 5 cm x 5 cm x 1° is used as S_j to calculate P_i at detector
- Use code data to remove non-radiating voxels from edge (by factor 4) to13,161cells
- At each step location of subvoxels is checked to make sure it is within plasma' subvolume region and does not intersect wall.
- avg 44 sightlines per voxel, maximum is 113
- All plasma voxels can be seen by at least one IRVB channel

E N

Tomography – applied to imaging bolometers

See next presentation by R. Sano

Edge stochastic magnetic field and modification by n/m=1/1 resonant perturbation

Sustained detachment with application of n/m=1/1 island

1/3 reduction of divertor particle flux1/10 reduction of divertor energy fluxThe discharge was terminated by stop of NBI heating.No confinement degradation, even slight improve.

The island structure seems to stop radiation region penetrate inward

Inside island parallel transport dominant

- → kept more than 10 eV > carbon radiation peak Te
- → Stop radiation region penetrate inward
- \rightarrow few eV & 10²⁰ m⁻³ plasma (strong radiation) outside LCFS
- → Indicates strong radiation around separatrix

Density ramp up leads to radiative collapse without n/m=1/1 island.

Detached plasma with magnetic island in LHD

M. Kobayashi, et al., PoP

Radiation Localization at HD X-points with Magnetic Island

C radiation data from EMC3-EIRENE

no island, $n_{LCFS} = 4x10^{19}$, attached

Imaging bolometer data

Shot 97365, t=4.5 s no island, $n_e = 5x10^{19}$, attached

Radiation becomes more well defined in helical divertor with increasing density and the addition of magnetic island

Shot 97353, t=5.3 s no island, $n_e = 1.5 \times 10^{19}$ attached Shot 97365, t=4.5 s no island, $n_e = 5x10^{19}$ attached Shot 97365, t=6.0 s

no island, $n_e = 7x10^{19}$ attached

0.025 0.020 0.015 0.010 0.005

> Shot 97327, t=6.0 s with island, $n_e = 6x10^{19}$ detached

attached

Shot 97354, t=5.3 s with island, n_e = 1.5x10¹⁹ attached

Increase in MI X-point Radiation with Detachment

C radiation data from EMC3-EIRENE with island, $n_{LCFS} = 4x10^{19}$, attached

Imaging bolometer data with island, $n_e = 5x10^{19}$, attached

MI x-point radiation increases with detachment as predicted but overestimated by code

with island, $n_{LCFS} = 5.5 \times 10^{19}$, detached

with island, $n_e = 6x10^{19}$, detached

CAD view from Port 10-O

Synthetic Images from EMC3-EIRENE data

with MI at 6-O

detached

IRVB data

with MI at 6-O attached

No MI attached

Model predicts radiation localization in island X-point during detachment

Inboard Side

Experiment shows radiation localization near island X-points as detachment occurs

Experiment and Modeling – a comparison

General observations

- Modeling radiation along far and near divertor X-point trace
- *Experiment stronger radiation from near divertor X-point*
- Power densities nearly match

- Modeling radiation along far and near divertor X-point trace
- Experiment –radiation from both near and far divertor X-points
- Power densities nearly match

- Modeling and experiments shows radiation localization near the island X-point towards inboard side
- Modeling power densities 7 times higher than experiments
- The change in radiation pattern is similar both in modeling and experiments

- Last year's results
 - Three Imaging bolometers are installed on LHD
 - \bullet Ports 10-O, 6-T , 6.5-L and 6.5-U
 - 6-T and 10-O (24 x 32 channels each)
 - 6.5-U 18 x 24 ch
 - 6.5-L 20 x 28 (total 2528 ch)
 - laser calibration data is being analyzed (Itomi)
 - Study of detached plasma with and without island (Pandya, Drapiko, Peterson)
 - geometry matrices have been calculated for all IRVBs (Peterson, Sano)
- This year's plan
 - Operate IRVBs at 6-T (SC4000), 10-O (SC500), 6.5-L (Omega) to study:
 - Evolution of Magnetic island assisted detached plasmas (Pandya)
 - 3-D properties of asymmetric radiative collapse (Sano)
 - install periscope at 6.5-U (Pandya)
 - Optimize FOVs at 6-T and 10-O using geometry matrix program (Peterson, Sano)

• Sample data (from code and measurements) and geometry matrices to Iwama, Teranishi et al. for development of 3D tomography software (Sano) 24

• Finish analyzing calibration data and incorporate into analysis for absolute measurements (Itomi, Pandya, Sano)

Upgrade IRVBs on LHD

- Currently 4 IRVBs on LHD (2528 ch)
 - tangential (6-T) (24 x 32 ch) (SC4000)
 - semi-tangential (10-O) (24 x 32 ch) (SC500 -> SC7600)
 - top (6.5-U) (18 x 24 ch) (SC655, add periscope)
 - bottom (6.5-L) (20 x 28 ch) (omega -> SC655)

- increase number of channels in 2014
 - add radial (8-O) (24 x 32 ch) (SC655) (direct view of closed divertor)
 - Increase lower (6.5-L) and upper (6.5-U) (24 x 32 -> 36 x 48 ch) (by adding periscope)
 - total 5000 channels from 5 IRVBs optimized for 3D tomography

