

Density collapse events observed in IDB/SDC plasmas on LHD

 <u>S. Ohdachi</u>, R. Sakamoto, J. Miyazawa, T. Morisaki, H. Yamada, Varela Rodríguez Jacobo, N. Nakajima,
F. Watanabe^a, M. Takeuchi, K. Toi, S. Sakakibara, Y. Suzuki, Y. Narushima, K. Y. Watanabe, K. Kawahata and LHD Experiment Group

National Institute for Fusion Science

- There various kinds of MHD instabilities observed in LHD
 - Plasma can be sustained safely with Mercier-unstable region with magnetic fluctuations. Effect on confinement is small in normal operations.
 - Pressure profile is peaked / magnetic shear is reduced ...
 - Sawtooth-like phenomena with low-n unstable region
 - m/n=1/1 island formation.
- Core density collapse(CDC) in IDB/SDC plasma.
 - Different in scale and in speed.
 - Detailed observation of CDC event.
 - Condition for the appearance.
 - m=1 oscillation with low-collisionality condition.
- Magnetic axis control in order to avoid CDC activity

Sawtooth-like activities

- After pellet injection, pressure profile is more peaked than gas-puffing discharges.
- When the pressure gradient exceeds the low-n unstable condition, sawtooth-like MHD activities are destabilized ensity collapse events ISHW 2009

-1.0년 3.2

3.4

3.6

R [m]

3.8

4.0

4.2

Crash can be seen after the deformation. ¹⁹

	Location/Rationa I surface	Time scale	Cause
Sawtooth-like activities	Core 1=1/2, 1/3	2~5ms	Interchange modes
Low shear collapse	Edge $\iota = 1/1$	~50ms	Low magnetic shear in magnetic hill region
Core Density Collapse	Core (1=?)	< 1ms	?

- MHD events has been observed only when the pressure gradient is fairy steep and/or the magnetic shear is very week.
- Core density collapse is the first events in LHD where the plasma confinement is largely affected by MHD instabilities. Density collapse events ISHW 2009

IDB/SDC discharge with CDC

- A peaked profile is formed in the recovery phase after sequentially injected hydrogen pellets. In this recovery phase, the pressure profile becomes peaked; IDB/SDC plasma is formed.
- Increase of the β₀ is disturbed by so-called core density collapse(CDC) events. CDC is an abrupt event where the core density is collapsed within 1 ms. (much faster than other MHD relaxation events in the LHD)

MHD property of IDB/SDC

- Pressure profile just before CDC is shown. It is peaked at ρ = 0.4~0.6. It is within the magnetic well region.
- Rotational transform profile is reversed in the core region (tokamak-like shear.) With the increase of the beta, the magnetic shear in the edge region is increased.

CDC dependencies

Electron Temperature Before Collapse [eV]

- Achievable density is higher, when preset magnetic axis is located outward.
- R_{ax0} > 3.75m, increase of the central beta is limited by CDC.
- Change of the central beta is up to 50% in higher magnetic field.

• Small crash in the outboard edge appears first. Inversion surface is about $\rho = 0.8$.

• Spikes with main collapse can be seen only in outboard side.

- Edge profile modification
 - The high-n ballooning modes is one of the candidate for the CDC. Interchange modes are stable in highly Shafranovshifted plasmas.
 - The region where CDC appears is consistent with unstable region of ideal ballooning modes.
 - This kind of high mode number instabilities is not easy to be detected by line-integrated diagnostics.
- Core m=1 activities
 - In standard experimental condition (Bt > 2.5T), the phenomena is too fast; we could not catch the MHD activities before the events.
 - However, we observe large amplitude m=1 oscillations in low Bt (0.75-1.5T) experiments with similar beta profile. In some cases, m=1 activity finally make the plasma crashed.

High-n ballooning mode

- High-n ballooning mode is destabilized in Mercier unstable region when pressure gradient is increased.
- Though the pressure gradient is larger in the core region, it is stable by the magnetic well due to the large Shafranov shift
- Eigen fuction with experimental profile is under calculation using CAS3D code.

N. Nakajima, et.al., Fusion Science and Technology 51(2007)79

CDC region and Ballooning unstable region

- High-n ballooning mode is unstable in the edge region. It is consistent with the operational limit of IDB/SDC plasmas.
- Stability is calculated high-n ballooning code developed by Prof. Nakajima.

- With low magnetic field, we observe pre-cursor oscillations with a mode numbers m= 1.
- Amplitude is not uniform; larger in the outward region.
- In many discharges, m=1 oscillations are just saturated. No CDC is observed.

Toroidal and radial structure of oscillations

• Core m=1 structure is rotating with localized toroidally.

Contour line is from stationary image above.

- With a lower magnetic field, achievable density is lower.
- With similar pressure profile with lower collisionality plasma, no CDC is observed. Only low frequency oscillations are observed in such condition.

In reactor relevant plasmas, CDC might not be destabilized by its low collisionality.

Higher central beta in inward shifted case

• In relatively inward-shifted cases($3.65m < R_{ax0} < 3.75m$), higher central beta value can be obtained with lower magnetic field. In $R_{ax0} < 3.7m$, CDC has not been observed.

- When the magnetic axis is shifted inward, 2/1, 3/1 sawtooth is unstable. (effects are smaller.)
- In outward shifted cases, CDC limits the increase of the central beta values.
- By vertical elongation, where Shafranov shift is reduced, higher central beta has been achieved.
 - By the real-time control of the magnetic axis, we can expect higher plasma beta plasma without MHD instabilities

Specification of PC Power Supply

Capacity of PC PS was increased

- IS, IV coils : < 6. 2 kA
- H 45 V, P 213 V (SS H 45 V, P 33 V)
- Operation with \leq 1.5 T is available
- Fixed B_t or Fixed I_{HC} operations

6.6kV

- In this discharge, shift with 40cm/8s is successfully done with Bt = 0.7T.
- So far, typical time scale of the IDB/SDC plasma is smaller than the time constant of the control.
- Relation of the magnetic axis position and the core MHD instabilities will be also presented in this conf.
- S. Sakakibara: "Study of MHD Characteristics by Magnetic Axis Control in high-beta plasmas of LHD" (P3-08)

- In IDB/SDC plasmas, increase of the central beta is limited by the CDC events when preset magnetic axis R_{ax0} is larger than 3.8m
- By CDC, core plasma is collapsed within 1ms. Maximum decrease in the central beta is abound 50%
- From detailed analysis of CDC event, decrease of the edge density appears first. Unstable region of ideal ballooning modes agrees with the operational limit.
- After the shrinking of the plasma core region moves radially. In collisional plasmas, CDC appears. In less collisional conditions, large amplitude m=1 oscillation appears. Origin of m=1 oscillation is not clear.
- When vacuum magnetic axis is smaller than 3.75m, CDC boundary can be passed with reduced magnetic field.
- Control of the magnetic axis will be efficient to achieve highcentral beta plasmas.

Magnetic Reynolds number at CDC

- Magnetic Reynolds number shows that with increased plasma parameters, CDC still appears.
- In high density reactor (Bt = 10T, Te0 = 5keV, ne = 1.25x10²¹ m⁻³, R = 7.2m, a = 1.6m), S = 2x10¹⁰. We need care CDC in this plasma parameters.

$$v_{ei} = 1.4 \times 104 [1/s]$$

• With reduction of the magnetic field, CDC becomes smaller and slower.

Peaked pressure profile in pellet discharges

- Density profile is hollow one in normal discharges.
- After the pellet injection, in the density decaying phase, the pressure gradient becomes steep. Density collapse events ISHW 2009

IDB/SDC plasma and stochastisity

- Will be discussed in Morisaki's talk.
- I08 Morisaki" Effect of Nonaxisymmetric Perturbation on Profile Formation"

Collisionarity

• CDC in Bt > 1.5T. m=1 oscillation in Bt < 1.0

Iron magnetic shied 2.5cm in thickness

ollapse events ISHW 2009

with large diameter scintillator

screen(10cm).

FIG. 6. Radial profiles of (a) pressure P, (b) normalized rotational transform $\iota/2\pi$, (c) magnetic well and hill V", (d) Mercier criterion D_l , and (e) growth rate of the ideal ballooning mode γ .