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Content of my talk @

* A new type of the energetic particle driven MHD instability,
EIC was found in LHD (X. D. Du, et. a/., Phys. Rev. Lett.
114 (2015), 155003) in hydrogen heating campaign.

e Observation of the EIC in the new deuterium heating
campaign, by which our understanding of the EIC is
Improved, will be discussed.

1. The characteristics of the EIC in deuterium experiment.
Stability of EIC with deuterium beam injection.

2. The effect of the EIC on the energetic particle and the bulk
plasma.

3. Strategy to control the EIC.
1. EIC suppression with ECH heating.
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Potential formation / modification of the EP profile
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EICs becomes unstable when the
perpendicularly injected NBI
power is increase.

Bursts of MHD activities less
frequently activated are
observed in deuterium campaign.

Impact of each EIC burst is
larger, as seen in the time
evolution of beta than that
observed in hydrogen campaign.

Total neutron emission rate is
decreased as much as 60%o.
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Magnetic fluctuations with an EIC event

m/n = 1/1 chirping-down
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:j";:{ﬁ;u- Bursting MHD activities together with the m/n = 1/1 chirping-

down MHD mode iIs observed.

 The precursors-like oscillations before the onset of the EIC is
quite complicated. (There are several patterns.) 5/23
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Toroidal probe array

By (integrat%d, f>100Hz) [a.u.]
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First, a large deformation with n =1

occurs, and the structure rotating into the

direction the precession motion.

The perturbation is quite localized on the
lota = 1 rational surface ( -> interchange

mode). ECE measurement

The rotation frequency is similar to the
frequency of the precession frequency of
the EPs (-> EP driven mode). 6/23



The observed frequency of EICs Is proportional to

the precession frequency of helicall
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€ Precession frequency is proportional
to the energy of EPs and does not
depend on kinds of particles. The
chirping down frequency is similar to
the frequency of the precession
frequency

€ EICs by PERP NBIs with 66 kV has
the larger frequency than that with
60 kV and 45 kV.

€ Initial frequency dependence
strongly supports that the EIC is
driven by the pependiculaly injected
EP discussed in ref [1].
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[1] X. D. Du, et al., Phys. Rev. Lett. 114(2015), 155003



Parameter dependence of the EICs
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Energy Principal with Energetic particle

Ol + O0Wpynp H OWy = 0,

f
Bulk plasma \ . .
From Energetic Particle
wz
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SW, = l/g V. Ppdr,  The injected beam is deposited at the outer
region. The pressure of the energetic particle
is larger in only one valley of the weak
magnetic field. 0s | |
—% > Cyp, ) 04 | Ep pressure
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It is expected that larger power D beam E o
produces larger pressure gradient of %
energetic particle. Dy
e Why is EIC with D beam more stable? T2 a5 s a5 4 as o5 s




Pressure gradient of the bulk plasma is not changed

Pressure Gradient at iota = 1 surface
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 The pressure gradient which drive the pressure driven mode is not
changed in H/D experiment.

 Why is EIC more stable in D beam heating?
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Mode width resistive Interchange mode

and width of the banana orbit
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[2]H. Bigrari, and L Chen, Phys Fluids 29 (1986), 296

Banana width (p,) is
proportional to the mass of the
particle.

Width of the deuteron is wider
than that of proton.

It is predicted[2] that the
threshold for excitation is
increased by

Pb Pb

2122

PR PR
where the mode with of the
resistive interchange mode is p;

This is one possible explanation
that EIC with D beam is more
c§tab|e. 12/23



Content of my talk

2. The effect of EIC on the energetic particle and the bulk
plasma.
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Formed electrostatic potential is larger

In deuterium experiments
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The large negative electrostatic potential, ~25kV, is formed with expelling of
EPs by EICs.

The formed potential is about two times larger than that of hydrogen
experiments. The variation of potential occurs around 1=1 surface.

Change of the distribution of the energetic particle is observed by the CNPA
and neutron profile measurement. (K. Ogawa’s talk (Thursday)) e



Transport of the edge plasma is affected transiently @
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The effect on the core plasma is not obvious since only the
energetic particles in the edge region are affected by the EIC.
However, In order to achieve high central temperature, reduction of
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the EIC is needed. = Control of the EIC is required.
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Content of my talk

3. Strategy to suppress the EIC.
1. EIC mitigation with ECH heating.
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Control of the EIC with narrower mode width @

Typical displacement of the Interchange Mode
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Comparison of 142077 and 142084

1%%% @) Wolk] ]
%:g (B) ne_bar{10"'m™] |
10 | —
4 l 1 ‘ L
2 ' ' ' Neutron |
31(C) Emission -
g~ ate 1
2 10"n/s]
3[D) e mtmEe, E
B TilkeV]@3.81[m] |
Tl(E) ' | o
_ With ECH
e
s [
@
Without ECH
4.4 4.6 2.8 5.0 5.2 5.4
time[s]

YIRS
coooo
ECH total[MW]

Control of EIC in High-Ti Deuterium exp.

The control of the EIC
using ECH was already
reported in lower ion
temperature regime. (X.
D. Du et. al. Phys. Rev.
Lett. 118 (2017), 125001)

Clear disappearance of

the EICs are observed
with EC heating at the
center in the in deuterium
campaign of high-Ti
discharge condition. No
reduction of the neutron
emission rated is observed.
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Change in the Te w/wo ECH
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 The electron temperature at iota = 1.0 is slightly increased.

« Change of the magnetic shear can be another candidate for the
suppression.

« Comparison of the radial mode width should be done to clarify the
stabilization. 20/23



- 20%

Poloidal coils *MYn=1/1 static island

 RMP field resonant with iota = 1 rational surface can be applied.
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Wp [kJ]

EIC behavior with RMP field
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When the EICs are
marginally unstable,
RMP application control
the EIC excitation.
Penetration of the
external field to the
plasma is required.

Total amount of the
trapped EPs (estimated
from FC) is not modified
significantly since the
Neutron Emission rate is
not changed so much.

Orbit of the EPs with
RMP field will be

Investigated. 22/23



From the resonance of the precession motion of the helically
trapped particle and resistive interchange mode, so-called EIC mode
appears in the Large Helical Device.

The amplitude and the effects of an EIC events on plasma is
enhanced in deuterium experimental campaign. From the
comparison of the result with D and H, mechanism of the EIC
excitation is confirmed.

Since the effect of the EIC is quite large, two methods to control
EIC are performed.

— ECH injection.

Disappearance of the bursting EIC is observed. Instead of EIC,
complicated MHD activities appears. However, the energetic
particles are well confined and not expelled by these activities.

— RMP (m/n = 1/1) application.

When the external field penetrate the plasma, disappearance
of the bursting EIC is observed without reducing the total

amount of trapped EPSs. 23/23
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Energy Principal with Energetic particle
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3. Stabilized the resistive interchange
mode. (RMP application)
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Penetration of the RMP field and MHD instability

1 oF Penetration 1 1%te ¢ eeg . :u'm:i (%) .-
osh {1 os]8 - | ]

e ~ Shield v ' 5 n, (10" m™) N
i W R S e S B O T S
5 I 1 [ d'l' J'dr tkawm]
T oo s i'I Cou

"-ﬂ': . E 5 u :: _______________________ ... ......-.-.-.-1.:.
10F Penetration T

: s ; b,,/B, (10%) ]
i " A " L A i " i L " D‘s u
1.0 1.5 2.0 l 4 |
1/ (du/dp) 0 ]—I-h——l——

4r f,, (kHz)
When the external field is applied, 2l ' ]
field is shielded with small field. ' .l ) f-t{ia:rla_a-‘-
External field penetrates the plasma %0 200 400
and make magnetic island(m/n = 1/1). (AIT)

LIIJ

N A O

D

 RMP application affects the resistive interchange mode.
 When the field penetrates and pressure gradient is reduced (island formation),

resistive interchange modes disappear.
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Case A: magnetic
island is formed.

S. Sakakibara et al., Proc.
in 33th EPS, Rome, Jun.
2006 ECA Vol. 301, p-
4.113 (2006).

» Even the external field is partly shielded, MHD activities are suppressed to

some extent.
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" D. Spong, APS 2014 tutorial talk.

There are three type of the orbit in Heliotron-type device, such as LHD.
The passing, the helically trapped and the particles.

The interaction between precession motion of the Eps and the MHD mode
(resisitive interchange mode at iota =1 rational surface) is somewhat

similar to Fishbone and off-axis Fishbone in Tokamaks. )8/3
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Signals from CNPA seems to be response to EPs (~“65keV)
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€ When the EICs occur, the neutral flux measured
by CNPA up to 60 keV increases when the
injection beam energy of PERP-NBI is E, ~65keV.

@ Though the simultaneous increase of H/D alpha
signals are observed, the increase of the neutral
flux in higher energy region (60 ~150keV) is not

observed.

@ The increase of the neutral flux which
energies are less than 60 keV may come from
the change of the distribution of EPs caused
by the EIC events.
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Precursor-like oscillation @

Quite complex and not easy to understand.

Stationary oscillation in toroidally and
rotating poloidally.

Sometimes it rotates toroidally.
n=10, m=1???. (From the orbit,

Toroidal Array

Poloidal Array
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Formed electrostatic potential is larger

In deuterium experiments
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 The large negative electrostatic potential, ~25kV, is formed
with expels of EPs by EICs.

 The formed potential is about two times larger than that of
hydrogen experiments. The variation of potential occurs

around 1=1 surface. 33/23



EICs localize at =1 surface
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The threshold of for the excitation of the EICs may be larger in D beames,

A . ] :
though neutron emission rate is not measured with H-beam.
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